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Abstract. Recent high throughput techniques in molecular biology have
brought about the possibility of directly identifying the architecture of
regulatory networks on a genome-wide scale. However, the computational
task of estimating fine-grained models on a genome-wide scale is daunt-
ing. Therefore, it is of great importance to be able to reliably identify
submodules of the network that can be effectively modelled as indepen-
dent subunits. In this paper we present a procedure to obtain submodules
of a cellular network by using information from gene-expression measure-
ments. We integrate network architecture data with genome-wide gene
expression measurements in order to determine which regulatory rela-
tions are actually confirmed by the expression data. We then use this
information to obtain non-trivial submodules of the regulatory network
using two distinct algorithms, a naive exhaustive algorithm and a spec-
tral algorithm based on the eigendecomposition of an affinity matrix.
We test our method on two yeast biological data sets, using regulatory
information obtained from chromatin immunoprecipitation.

1 Introduction

The modelling of cellular networks has undergone a revolution in recent years.
The advent of high throughput techniques such as microarrays and chromatin
immunoprecipitation (ChIP [1,2]) has resulted in a rapid increase in the amount
of data available, so that it is possible to measure on a genome-wide scale both
the expression levels of thousands of genes and the architecture (connectivity)
of the regulatory network which links genes to their regulators (transcription
factors). However, this data is often very noisy, and the sheer amount of data
makes the development of quantitative fine grained models impossible.

Gene networks are frequently modelled in very different ways at different
scales [3]. Network modelling at the genome-wide scale is often limited to the
topology of networks. For example, Luscombe et al. used a large database con-
structed by integrating all available data on transcriptional regulation from a
variety of sources (ChIP-on-chip, protein interaction data, etc.) to model the
changes in the topology of the yeast regulatory network in different experimental
conditions [4]. While this result was per se of great importance in furthering our



understanding of transcriptional regulation, it is not clear how this approach
could be used to model the dynamics of the system. At the other end of the
spectrum [5], small networks consisting of a few transcription factors and their
established target genes are often modelled in a realistic fine grained way, al-
lowing for a quantitative explanation of qualitative behaviours in the cellular
processes such as cycles, spatial gradients, etc.

While these fine grained models are often very successful in describing spe-
cific processes, they rely on rather strong assumptions. First of all, they need
the regulatory links they exploit to be true regulations. While there is a growing
number of experimentally validated regulatory relations in a number of organ-
isms, the main techniques to study regulatory networks on a genome-wide scale
are ChIP-on-chip [1] and motif conservation [6]. However, it is well known that
ChIP-on-chip only measures the binding of a transcription factor to the pro-
moter region of the gene. While binding is obviously a necessary condition for
transcription to be initiated, there is abundant biological evidence [7] that shows
that it is not a sufficient condition. Therefore, we may expect that interpreting
ChIP-on-chip data as evidence for regulation may lead to many false positives,
which would obviously be a big problem for any fine grained model. As for motif
conservation, it is often difficult to assign a motif to a unique transcription fac-
tor and large numbers of false positives can be expected. Secondly, the system
modelled should be reasonably isolated from the rest of the cell. Often collateral
processes are simply modelled as noise in fine grained models, and this approx-
imation would clearly break down in the presence of strong interactions with
variables not included in the model.

We recently presented a probabilistic dynamical model which allowed us to
infer both the active transcription factor protein concentrations and the intensity
of the regulatory links between transcription factors and their target genes [8, 9].
The model was computationally efficient so that the network could be modelled
at the genome level, and its probabilistic nature meant that we could estimate
the whole probability distribution of the concentrations and regulatory intensities,
rather than just providing point estimates. This means that the significance level
of the regulatory interactions could be assessed. This information can be used in
many ways: for example, one may use it to obtain a refinement of the ChIP data,
so that regulatory relations below a certain significance threshold are effectively
treated as false positives. However, the information about the absolute value
of the regulatory intensity is also of interest, since low intensity regulations
(however significant) could be ignored when trying to obtain submodules of
manageable size.

The main novelty of this paper is to present two algorithms to obtain sub-
modules of regulatory networks. The first algorithm is a simple exhaustive search
algorithm. While in principle this is applicable to any network with binary con-
nectivity, it obtains biologically relevant submodules when applied to a net-
work comprising significant regulations only. The second algorithm is a spectral
method based on an eigenvalue decomposition of an affinity matrix and on a
generalisation of the spectral clustering algorithm described in [10]. This takes



into account the absolute value of the regulatory intensity and has the advan-
tage of providing a natural way of ranking the submodules according to their
importance in the global cellular network.

The paper is organised as follows: we first briefly review the probabilistic
model used to infer the regulatory intensities. We then present the two algo-
rithms to identify submodules of the regulatory network. In the results section
we demonstrate our approach on two yeast data sets, the benchmark cell cycle
data set of [11] and the more recent metabolic cycle data set of [12]. Finally, we
discuss the relative merits of the two algorithms we proposed and their validity
as an alternative approach to existing graph clustering algorithms.

2 Quantitative inference of regulatory networks

Here we briefly review the probabilistic dynamical model for inference of regula-
tory networks proposed in [9]. This builds on the model presented in [8], which
in turn extends the linear regression approach, first introduced in [13], to take
into account gene-specific effects. We have (log transformed) expression level
measurements y,; for N genes at 1" time points. We assume that the binding of
g transcription factors to the N genes is known (for example via ChIP-on-chip
experiments), so that we have a binary matrix X whose nm entry X, is one
if gene n is bound by transcription factor m and zero otherwise. We can then
write down our model as

q
Ynt = Z XnmbnmCme + Pn + €nt. (1)

m=1

Here by, represents the regulatory intensity with which transcription factor
m enhances gene n (negative intensity models repression), ¢, models the (log)
active protein concentration of transcription factor m at time ¢, ., is the baseline
expression level of gene n and €y ~ N (0,0?) is an error term.

The model is then specified by a choice of prior distributions on the random
variables b, ¢ and p,,. We assign spherical Gaussian priors to the regulatory
intensities and the baseline expression level

b ~ A (0, 02)
Hn ~ N(T’IB) .

The choice of prior distribution on the concentrations ¢,,; depends on the specific
biological situation we wish to model. For example, for independent samples we
may assume that the prior distribution on ¢, factorises along time ¢t. As we are
going to model time series data, an appropriate choice for the prior distribution
on ¢, is a time-stationary Markov chain

Cmt = ’Ymcm(t—l) + Nmt

Nmt ~ N (0,1 —172) (2)



Cm1 NN(O, ].)

The variance in (2) is chosen so that the process is stationary, i.e. the ex-
pected changes over a period of time At depend only on the length of the time
interval, not on its starting or finishing point. The parameters 7, € [0,1] model
the temporal continuity of the sequence c¢,¢. Values of ~,, close to 1 lead to
smoothly varying samples, with contiguous time points having very similar val-
ues of concentration. On the other hand, low values of v,, lead to samples with
little correlation among time points, so that in the limit of v,, = 0 the modelling
situation of independent time points is recovered.

Having selected prior distributions for the latent variables by, ¢t and p,
we can use equation (1) to compute a joint likelihood for all the latent and
observed variables

P (Ynts b, Cmt, ] X) =

3
= Wt b Conts s X) D () P (€ont 70) P (1|7, ) ®)

We can then estimate the hyperparameters a, v,,, o, 7 and 8 by type II max-
imum likelihood. Unfortunately, exact marginalisation of equation (3) is not
possible and we have to resort to approximate numerical methods. This can be
done e.g. using a variational EM algorithm as proposed in [9], where details of
the implementation are given.

Once the hyperparameters have been estimated, we can obtain the posterior
distribution for the latent variables given the data using Bayes’ theorem

p(ylb,c,w)p (b, ¢, )
b = . 4
p(bc,uly) 0 b,c, 1) dvdedy 4)

3 Identifying submodules

3.1 Naive approach

Given the posterior probability on the regulatory intensities by, one can asso-
ciate a significance level to each regulatory interaction by considering the ratio
between the posterior means and the associated standard deviations. One can
then obtain a refined network structure comprising only of significant regula-
tory relations by considering only relations above a certain significance thresh-
old (which can be viewed as the only parameter in this algorithm). It is then
straightforward to find submodules in a regulatory network with binary con-
nectivity. One can start with any transcription factor and subsequently include
other transcription factors which have common targets with the first one. This
can be iterated and it will obviously converge to a unique set of submodules.
This procedure is schematically described in Algorithm 1.

3.2 Introducing the regulatory intensities

The main drawback of the procedure outlined in Algorithm 1 is that it does not
take into account the information about the regulatory intensities, apart from



Algorithm 1 Identify submodules of a network with binary connectivity

Input data: set R of regulators, set G of genes, regulatory intensities bnm;
Construct a binary connectivity matrix X by thresholding the intensities
repeat
Choose a regulator r1 € R. Include the set of all its target genes G,1 C G;
repeat
Include the set of regulators other than r; regulating genes in G,1, Rg,,; C R;
Include all genes regulated by Rg,, not included in G,1;
until No new genes are found;
Output reduced sets Ry, Gy for the submodule and R, G for the elements not
included in the submodule;
until R, G are the empty set.

using it as a guideline to introduce thresholds of significance. Specifically, it only
exploits the outputs of the probabilistic model in order to obtain a refinement
of the network architecture, which is only a minimal part of the information
contained in the posterior distribution over b,,,,.

However, when trying to identify submodules considering all the available
information on the regulatory intensities, we may find that there are few truly
independent submodules, and it might be hard to manually determine which
submodules are approximately independent. In practice, we would like to be
able to have an automated way to obtain submodules.

Since our probabilistic model reconstructs transcription factors concentra-
tions and regulatory intensities from time-course microarray data, we can inter-
pret the regulatory strengths as a measure of the involvement of a transcription
factor in the cellular processes in which its target genes participate. A standard
technique for retrieving genes associated with (approximately independent) cel-
lular processes is PCA (also known as SVD, [14]). However, the eigengenes re-
trieved by PCA are not necessarily disjoint in terms of gene participation, in
particular the same genes can be represented in different eigengenes, mirroring
the biological fact that the same genes can participate in more than one cel-
lular process. While this constitutes an important piece of information in its
own right, it could be a drawback from the point of view of identifying indepen-
dent submodules. We therefore propose a modified algorithm which extends the
spectral clustering algorithm developed in [10].

Given the posterior distribution over the regulatory intensities

p (bnm|y) ~N (bnmwnma o; )

bnm

we construct an affinity matrix C' between transcription factors using the formula
Cij = [(b)] [{by)|. ()

Here, (b;) denotes the posterior expectation of the vector containing the regula-
tory intensities with which transcription factor i influences all the genes in the
genome (set to zero for genes that are not bound by that transcription factor).



Algorithm 2 Identifying transcription factors associated with submodules of a
network using the regulatory intensities.
Input data: affinity matrix A;
repeat
Compute the eigendecomposition of A, giving eigenvalues A; and eigenvectors E =
{ei}: 1= la"',Q; _
Define B = {e1}, B=E —B
If e; € B is such that |e;|” [e;] =0 Ve; € B, include e; in B;
until No such e; can be found

We use the absolute value of the intensity since for the purpose of identifying
submodules we are not interested in the sign of the regulation. According to
this formula, then, two transcription factors will have high similarity if they
coregulate with high intensity a large number of target genes.

If we assume that there are p independent submodules, with strong inter-
nal links, the affinity matrix (5) will be have p blocks on the diagonal (up to
a reordering of the rows and columns) showing a very high internal covariance,
while the remaining off-diagonal entries will be much smaller. By identifying
these blocks, one can then obtain the transcription factors involved in the sub-
modules. The blocks can be obtained by noticing that, for a non-degenerate
spectrum (which holds with probability 1), the eigenvectors of C' will present a
block structure too, so that eigenvectors pertaining to different blocks will have
non-zero entries in different positions. By selecting exactly one eigenvector per
each block we obtain a set of clustering eigenvectors®, and we can obtain the
transcription factors belonging to different modules by considering the nonzero
entries of the clustering eigenvectors. Furthermore, the eigenvalues associated
with the clustering eigenvectors are monotonically related to the total regu-
latory intensity associated with the submodule (the sum of all the regulatory
intensities of all the links in the network). Therefore, we can use the eigenval-
ues to rank the various submodules in terms of their importance in the overall
network. A strategy to identify the submodules can therefore be obtained as
outlined in Algorithm 2.

If the modules are not exactly independent, but links between modules are
characterised by low regulatory intensity, we can introduce a sensitivity param-
eter # and replace step 3 in algorithm 2 by |e;|” |e;| < 6 Ve; € B. As the
eigenvectors of a matrix with non-degenerate spectrum are stable under pertur-
bations, we are guaranteed that, for suitably small choices of 6, approximately
independent submodules will be found.

In practice, it is often the case in biological networks that there are few
submodules of the regulatory network active in a given experimental condition,
so that we may expect the submodules identified by the clustering eigenvectors
with highest associated eigenvalue to be biologically relevant, while submodules
associated with small eigenvalues will be less relevant.

3 The name is chosen for their analogy with spectral clustering [10].



The simplicity of the algorithm leads to several advantages. For example, by
considering the eigenvectors of the dual matrix

Kip = (bl [(bpi)] (6)
i=1

one can retrieve the genes involved in the submodules.

4 Results

4.1 Data sets

We tested our method on two yeast data sets, the benchmark cell cycle data
set of [11] and the recent metabolic cycle data set of [12]. These data sets were
analysed in our recent studies [8,9]. The connectivity data we used in both cases
was obtained using ChIP: for the metabolic cycle data, we used the recent ChIP
data of [1], while for the cell cycle data we chose to use the older ChIP data of
[2] since this combination has been extensively studied in the literature [15, and
references therein]. The ChIP data is continuous, but, following the suggestion
of [2], we binarised it by giving a one value when the associated p-value was
smaller than 10~3. This was shown in [8] to be a reasonable choice of cut-off, as
it retained many regulatory relations while keeping the number of false positives
reasonable.

4.2 Cell cycle data

Spellman et al. [11] used cDNA microarrays to monitor the gene expression levels
of 6181 genes during the yeast cell cycle, discovering that over 800 genes are cell
cycle-regulated. Cells were synchronised using different experimental techniques.
We selected the cdclb data set, consisting of 24 experimental points in a time
sequence.

The connectivity data we used for this data set was that obtained by [2]. In
this study, ChIP was performed on 113 transcription factors, monitoring their
binding to 6270 genes.

We removed from the data set genes which were not bound by any transcrip-
tion factor and transcription factors not binding any gene. We also removed the
expression data of genes with five or more missing values in the microarray data,
leaving a network of 1975 genes and 104 transcription factors.

For the purposes of identifying submodules, we are primarily interested in
the regulatory intensities with which transcription factors regulate target genes.
Therefore, we will use the model described in Section 2 to obtain posterior
estimates for the regulatory intensities by,,. Also, we will be interested primarily
in nontrivial submodules, i.e. submodules involving more than one regulator.



Identifying submodules using the ChIP data As ChIP monitors only
the binding of transcription factors to promoter regions of genes, and not the
actual regulation, we may expect that many true positives at the binding level
are actually false positives at the regulatory level. For example, the ChIP data
of [2], using a p-value of 1072, gives 3656 bindings involving 104 transcription
factors and 1975 genes. However, if we consider the posterior statistics for the
regulatory intensities, we see that most of these bindings are not associated
with a regulatory intensity significantly different from zero. Specifically, only
1238 bindings are associated with a regulatory intensity greater than twice its
posterior error (significant with 95% confidence), and only 749 are significant at
99% confidence level.

This large number of false positives is a serious problem when trying to
identify submodules. For example, if we use the naive Algorithm 1 directly on the
ChIP data, we obtain only one nontrivial* submodule involving 100 transcription
factors and 1957 genes. Obviously, the usefulness of such information is very
limited.

Identifying submodules using significant regulations Things change dra-
matically if we construct a binary connectivity matrix by considering only sig-
nificant regulatory relations. In order to avoid obtaining too large components,
we fixed the thresholding parameter to be equal to four. At this stringent sig-
nificance threshold the network size reduces significantly, as there are now 81
transcription factors regulating a total of 438 genes. More importantly, there are
now nine distinct nontrivial submodules of the regulatory network, each involv-
ing between two and thirteen transcription factors.

The submodules identified are highly coherent functionally. To appreciate
this, we follow [2] and group transcription factors into five broad functional cat-
egories according to the function of their target genes. These categories are cell
cycle, developmental processes, DNA/RNA biosynthesis, environmental response
and metabolism [2, see Figure 5 inset]. We then see that the largest submodule,
consisting of 13 transcription factors regulating 117 genes, is largely made up of
transcription factors functionally related to the cell cycle. In fact, all of the active
transcription factors functionally related to the cell cycle (with the exception of
SKN7 and SWI6 which are not involved in any nontrivial module) belong to this
submodule. These are ACE2, FKH1, FKH2, MBP1, MCM1, NDD1, SWI4 and
SWI5. Among the other transcription factors in the module, three (STE12, DIG1
and PHD1) are associated with developmental processes and the remaining two
(RLM1 and RFX1) are associated with environmental response. The presence
of these transcription factors in the same module could indicate a coupling be-
tween different cellular processes (for example, it is reasonable that cell cycle
and cell development could be coupled), but it could also be due to the fact that
certain transcription factors may be involved in more than one cellular process,

4 There are four trivial submodules made up of a single transcription factor regulating
genes with only one regulator.



hence rendering the boundaries between functional categories somewhat fuzzy.
A graphical representation® of this submodule is given in Figure 1.

Fig. 1. Graphical representation of the nontrivial part of the cell cycle submodule of
the regulatory network obtained by considering only significant regulatory relations.
The boxes represent the transcription factors, the inner vertices represent the 19 genes
regulated by more than one transcription factor.

The smaller submodules exhibit similar functional coherence. For example,
there are four independent submodules involving transcription factors related to
cell metabolism, consisting respectively of: ARG80, ARG81 and GCN4; ARO80
and CBF1; LEU3 and RTG3 and DAL82 and MTH1. Other two submodules
consist mainly of genes related to environmental response, one including CIN5,
MAC1 and YAP6 together with AZF1 (related to metabolism) and the other
one including CAD1 and YAP1. The remaining two submodules consist of two
transcription factors belonging to different functional categories. The nontrivial
part of one of these submodules is shown graphically in Figure 2. As it can
be seen, this is a reasonably sized system which could be amenable to a more
detailed description.

Identifying submodules using regulatory intensities While considering
only significant regulations clearly leads to a significant advantage when trying to

5 The graphs in this paper were obtained using the MATLAB interface for
GraphViz, available at http://www.cs.ubc.ca/ murphyk/Software/GraphViz/
graphviz.html.



Fig. 2. Graphical representation of one of the submodules of the regulatory network
obtained by considering only significant regulatory relations. This submodules is func-
tionally related to the cell metabolism.



identify submodules, a simple thresholding technique as discussed in the previous
section clearly does not make use of the wealth of information contained in the
regulatory strengths. We therefore studied the cell cycle data using the spectral
algorithm described in section 3.2.
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Fig. 3. Graphical representation of the principal submodule obtained by considering
the regulatory intensities. All the transcription factors involved in this submodule (in-
dicated in the outer boxes) are key regulators of the cell cycle. The inner vertices
represent the genes with more than one significant regulator involved in the submod-
ule.

We constructed the affinity matrix as in (5) by using all regulatory intensities
with a signal to noise ratio greater than 2 (95% significance level) and selecting
only genes significantly regulated by two or more transcription factors (these are
the only ones that will contribute to the off-diagonal part of the covariance).
We then applied the submodule finding Algorithm 2 with a sensitivity param-
eter 0.01. This gave four clustering eigenvectors, yielding submodules involving
between seven and two transcription factors each. Ranking these using the eigen-
values associated, we find that the submodules exhibit a remarkable functional
coherence. For example, 98.7% of the mass of the first clustering eigenvector
is accounted for by six transcription factors. These are ACE2, FKH2, MBP1,
MCM1, NDD1 and SWI4 and are all functionally associated with the cell cycle.
By considering the genes involved in this submodule, obtained by considering
the eigendecomposition of the dual matrix (6), we also recognise some key genes
involved in the cell cycle, such as AGA1, CLB2, CTS1, YOXI1 and the tran-
scription factor genes ACE2 and SWI5. The nontrivial part of this submodule
of the regulatory network is shown in Figure 3. Similarly, the second eigenvector
has 99.9% of its mass concentrated on two transcription factors, DAL82 and



MTH1, which are related to carbohydrate/nitrogen metabolism, 99.3% of the
third eigenvector’s mass is accounted for by AZF1, CUP9 and DALS81, which
are related to cell metabolism (CUPY is also associated with response to oxida-
tive stress), 99% of the mass of the fourth clustering eigenvector is accounted
for by LEU3 and STP1, both related to cell metabolism.

Fig. 4. Graphical representation of the affinity matrix obtained using the regulatory
intensities for the cell cycle data set(left) and block structure obtained from the sub-
modules found using the spectral Algorithm 2. One strongly interconnected submodule
is evident in the top left corner of the affinity matrix; the other submodules are asso-
ciated with much weaker interactions and are hard to appreciate at a glance.

A major difference with the naive submodule finding Algorithm 1 is the non-
exhaustive nature of the spectral algorithm. Specifically, while the naive algo-
rithm will assign each transcription factor represented in the network to exactly
one (possibly trivial) submodule, most transcription factors are not included into
any submodule by the spectral algorithm. This can be understood by consider-
ing the structure of the affinity matrix, which is shown graphically in Figure 4,
left. While there is one evident block with very high internal covariance in the
top left corner (representing the dominant clustering eigenvector associated with
the cell cycle), the other submodules are not easily appreciated, since they are
associated with much weaker regulatory intensities. The block structure given
by the submodules is shown graphically in Figure 4 right. Notice however that
most transcription factors are not associated with any submodule, indicating
that they do not appear to be key in any cellular process going on during the
cell cycle.

4.3 Metabolic cycle data

Tu et al. used oligonucleotide microarrays to measure gene expression levels dur-
ing the yeast metabolic cycle, i.e. glycolitic and respiratory oscillations following



a brief period of starvation. The samples were prepared approximately every 25
minutes and covered three full cycles, giving a total of 36 time points [12].

The connectivity we used to analyse this data set was obtained integrating
the two ChIP experiments of Lee et al. [2] and Harbison et al. [1], resulting in
a very large network of 3178 genes and 177 transcription factors. By integrating
the two datasets, we capture the largest number of potential regulatory relations,
which also implies we are introducing a large number of false positives. It is not
surprising then that trying to identify submodules directly from the ChIP data
leads to a single huge module including all transcription factors and all genes.

Perhaps more surprisingly, the situation does not improve much if we con-
sider only regulations with a high significance level (signal to noise ratio greater
than four). Although the number of significant regulations is much smaller than
the number of potential regulations (1826 versus 7082), the resulting network
still appears to be highly interconnected, so that the application of the naive
algorithm again yields one very large submodule (134 transcription factors) and
two small submodules containing two transcription factors each. These ones
are CST6 and SFP1, two transcription factors which may be loosely related to
metabolism (CST6 regulates genes that utilise non optimal carbon sources, while
SFP1 activates ribosome biogenesis genes in response to various nutrients) and
A1(MATA1) and UGA3, which do not appear to have an obvious functional
relationship.

We get a completely different picture if we use the information contained in
the regulatory strengths. If we again construct an affinity matrix by retaining
the regulatory strengths of all regulations which are significant at 95% for genes
regulated by at least two transcription factors, the spectral submodule finding
Algorithm 2 (again with sensitivity parameter set to 0.01) returns seven non-
trivial submodules.

Somewhat surprisingly, the first clustering eigenvector is again related to the
cell cycle: 96.6% of its mass is concentrated on the ten transcription factors
ACE2, FKH2, MBP1, MCM1, NDD1, SKN7, STB1, SWI4, SWI5 and SWI6,
which are all well known key players of the yeast cell cycle. This seems to add
support to the hypothesis, advanced by Tu et al., that the metabolic cycle and
the cell cycle might be coupled [12]. The functional coherence of the other sub-
modules is less clear: while GTS1 and RIM101, which account for 99.8% of
the mass of the second clustering eigenvector, are both involved in sporulation,
the functional annotations of the transcription factors involved in other sub-
modules are less coherent. For example, the coupling between MSS11 (which
regulates starch degradation) and WAR1 (which promotes acid and ammonia
transporters) is plausible but may need further experimental validation before
being accepted. A graphical representation of the submodule formed by GTS1
and RIM101 is given in Figure 5.
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Fig. 5. Graphical representation of the submodule of the metabolic cycle given by
GTS1 and RIM101, two transcription factors involved in regulating sporulation.

5 Discussion

In this paper we proposed two algorithms to identify approximately independent
submodules of the cellular regulatory network. Both methods rely on having
genome-wide information on the intensity with which transcription factors regu-
late their target genes, obtained for example by using the recent model proposed
in [9]. While the first algorithm is a simple exhaustive search, the second is more
subtle, being based on the spectral decomposition of an affinity matrix between
transcription factors, and is somewhat related to the algorithm proposed in [10]
for the automatic detection of non-convex clusters.

Experimental results obtained using the algorithms on two yeast data sets
reveals that both methods can find biologically plausible submodules of the reg-
ulatory network, and in many cases these submodules are of small enough size to
be amenable to be modelled in a more detailed fashion. The two algorithms have
complementary strengths: while the naive search algorithm has the advantage of
assigning each transcription factor to a unique submodule, many transcription
factors are not assigned to any module by the spectral algorithm. On the other
hand, the functional coherence of the submodules identified by the spectral al-
gorithm seems to be higher in the examples studied, and sensible submodules
are found even when the network is too interconnected for the naive search to
yield any submodules.



Another popular method to cluster graphs which has been extensively applied
to biological problems is the Markov Cluster Algorithm (MCL), which was used
successfully to find families of proteins from sequence data [16]. However, this
algorithm is designed for undirected graphs with an associated similarity matrix,
while the graphs obtained from regulatory networks are naturally directed (with
arrows going from transcription factors to genes). Even if we marginalise the
genes by considering an affinity matrix between transcription factors, this is
generally not a consistent similarity matrix, making the application of MCL
very hard. Bearing in mind the largely exploratory nature of finding submodules
of the regulatory network, we preferred to use simpler and more interpretable
methods.
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